Research Vignette: Faster Algorithms for Linear Programming

By Yin Tat Lee and Aaron Sidford

Interior Point Methods and Algorithmic Spectral Graph Theory

Linear programming has long stood as one of the key pillars of computer science. In practice, problems are often reformulated as linear programs to take advantage of fast implementations of linear programming algorithms. And in theory, the best running times for solving many problems are achieved by using the theoretical guarantees of these algorithms. Moreover, new algorithms for linear programming have tended to cause ripples across the field, yielding not just faster running times but new algorithmic frameworks and a new lens on the structure of difficult problems.

Recently, state-of-the-art linear programming techniques known as interior point methods have been making waves in the area of Algorithmic Spectral Graph Theory, which uses linear algebraic properties of graphs to improve algorithm design. Like many iterative methods for optimization, interior point methods reduce solving difficult problems, like linear programming, to solving a sequence of simpler problems — in this case, solving a system of linear equations. When solving classic network optimization problems like maximum flow and minimum cost flow using interior point algorithms, these linear systems are highly structured. To solve them, it suffices to solve linear systems in the combinatorial Laplacian of a graph, one of the central mathematical objects in spectral graph theory. Consequently, standard interior point methods provide an algorithmic framework that naturally facilitates the leveraging of spectral properties of graphs to obtain fast running times for network optimization problems.

Over the past decade, studying such problems at this boundary of continuous and discrete optimization has been an incredibly fruitful area of research. Building off work of Vaidya in 1991, in 2004 Spielman and Teng produced the first algorithm to solve these Laplacian systems in time nearly-linear in the size of the associated graph. This result influenced a decade of research in algorithmic spectral graph theory, prompted numerous breakthroughs in combinatorial optimization, and ultimately helped inspire much of the research in the Simons Institute’s Fall 2014 program on Algorithmic Spectral Graph Theory.

Moreover, Spielman and Teng’s result implied that iterations of standard interior point methods can be implemented in nearly linear time when solving common network optimization problems. In 2008, Daitch and Spielman proved that such an algorithm not only nearly matches the running time of the state-of-the-art 1998 algorithm of Goldberg and Rao for solving the maximum flow problem, but actually improves upon the previous best known algorithms for solving the minimum cost flow problem. Even more excitingly, over the past two years, modified interior point schemes and fast Laplacian system solvers have been used to improve the running time for exactly solving the maximum flow problem. In 2013, Aleksander Madry provided a faster algorithm for solving sparse unit capacity instances of maximum flow, and in 2014 we provided a new interior point scheme with a faster convergence rate that yielded faster algorithms for solving dense instances of the maximum flow and the minimum cost flow problems.

This interplay between algorithms for continuous optimization and the discrete structure of graphs was one of the central themes of the Simons Institute’s Fall 2014 Program on Algorithmic Spectral Graph Theory. Interior point methods and fast Laplacian system solvers are simply one illustration. Both in recent years and during the program there has been extensive work on using new iterative machinery and new structural properties of graphs to design faster and better algorithms for solving various graph problems. During the semester we enjoyed exploring multiple research questions in this direction and discussing the exciting work of visitors and long term participants. In the remainder of this vignette we will discuss one recent success story in this line of work.

CONTINUE READING